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Abstract: - As an extension of the linear robust recursive least-squares Wiener fixed-point smoother and filter, 
this paper originally designs the robust extended recursive Wiener fixed-point smoother and filter for 
estimating the signal in discrete-time wide-sense stationary stochastic systems. It is a characteristic in this paper 
that the signal is modulated with the nonlinear mechanism. As a step to the estimation problem for the 
observation mechanism with the nonlinear modulation, the robust signal estimators are proposed for the 
observation equation with the linear amplitude modulation of the signal. The observation noise is additional 
white noise. The system matrix in the state equation contains uncertain parameters. The robust extended 
recursive Wiener estimators are derived from the Wiener-Hopf equation. In the simulation example, it is shown 
that the proposed robust extended recursive Wiener fixed-point smoother and filter are superior in estimation 
accuracy to the extended recursive Wiener estimators. 
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1 Introduction 
In [1], the extended recursive Wiener fixed-point 
smoother and filter are presented in discrete-time 
stochastic systems with the nonlinear observation 
mechanism of the signal. Fang et. al. [2] introduce 
the Bayesian state estimation framework and review 
various techniques, from the standard Kalman filter 
for linear systems to extended Kalman filter, 
unscented Kalman filter and ensemble Kalman filter 
for nonlinear stochastic systems. Bayesian 
estimation methods include the Gaussian filtering, 
Gaussian-sum filtering, particle filtering and moving 
horizon estimation. The discussion of state 
estimation is extended to more complicated 
problems such as simultaneous state and 
parameter/input estimations. In [3], two algorithms 
of the extended unbiased finite impulse response 
(FIR) filtering of nonlinear discrete-time state-space 
models are discussed. Unlike the extended Kalman 
filter, both extended FIR algorithms demonstrate 
better robustness against model uncertainties. In [4], 
the robust Kalman filter is designed for systems 
involving unknown parameter perturbations with 
norm-bounded uncertainties. In [5], the robust 
recursive least-squares (RLS) Wiener fixed-point 
smoother and filter are designed in the signal 
estimation problem for the linear discrete-time 
stochastic systems with uncertain parameters in the 

system and observation matrices. In [6], the robust 
RLS Wiener FIR filter is proposed in linear discrete-
time stochastic systems with uncertain parameters in 
the system and observation matrices. In [7], the 
robust extended Kalman filter is designed in 
discrete-time stochastic systems. The algorithm is 
applied to the pulsar positioning system. In [8], the 
robust filter is designed for discrete time nonlinear 
systems including uncertainties. The nonlinear 
functions are assumed to be uncertain but belonging 
to a conic region. The design method also allows 
dynamic and measurement noises having unknown 
time-varying expected values, covariances and 
cross-covariances. In [9], the robust extended 
Kalman filter is designed to estimate the rotor 
angles and the rotor speeds of synchronous 
generators of a multi-machine power system.  

As an extension of the linear robust RLS Wiener 
fixed-point smoother and filter [5] in linear discrete-
time stochastic systems, this paper, in Theorem 2, 
originally proposes the robust extended recursive 
Wiener fixed-point smoothing and filtering 
algorithms for estimating the signal for discrete-time 
wide-sense stationary stochastic systems. As a first 
step to the robust extended recursive Wiener 
estimators, Theorem 1 proposes the robust RLS 
Wiener fixed-point smoothing and filtering 
algorithms for estimating the signal in the stochastic 
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systems with the linear amplitude modulation of the 
observation mechanism. It is assumed that the 
system matrix in the state equation contains 
uncertain parameters. It is a characteristic in this 
paper that the signal is modulated with the nonlinear 
mechanism of the signal. The observation noise is 
additional white noise. The robust extended 
recursive Wiener estimators are derived based on 
the robust RLS Wiener estimators in Theorem 1.  

In the simulation example, the phase 
demodulation of the signal is dealt with. The phase 
demodulation from the phase modulated signal is 
important in the analog and digital communication 
systems [10]. The estimation accuracy of the 
proposed robust extended recursive Wiener 
estimators is compared with the extended recursive 
Wiener estimators [1].  

 
 

2 Robust least-squares fixed-point 
smoothing problem for linear 
amplitude modulation of signal 

Let the state-space model in linear discrete-time 
stochastic systems be described by  

 

, ,
1 Φ Γ ,

,
.

(1)

Here,  represents the scalar signal to be 
estimated.  is the linear amplitude modulating 
function for  and  is an 1 state vector 
with the wide-sense stationarity.  is a 1  
observation vector transforming  to the signal 

.  is the additional white observation noise. 
Also, Φ  denotes the state transition matrix in the 
state equation and  is the white noise input. It 
is assumed that the signal and the observation noise 
are mutually independent and have zero means. Γ is 
the  by  input matrix. The auto-covariance 
functions of the observation noise and the input 
noise are shown in (1). Let the signal process be 
expressed by the autoregressive (AR) model of the 
finite order .  

 

1 2 ⋯
, (2)

It is assumed that the system matrix Φ in (1) has the 
general form and is not necessarily limited to the 
controllable canonical form. For the signal process 
expressed by the AR model of (2), let the signal 

 be expressed in terms of the newly introduced 
state vector  as follows.  

 

, 1 0 0 ⋯ 0 0 ,

⋮
1

⋮
2
1

(3)

Then the state equation, corresponding to the AR 
model (2), is described by  

 

1 Φ Γ ,
,

Φ

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

⋯

,

.

(4)

The system matrix Φ  in (4) has the controllable 
canonical form. By introducing the auto-covariance 
function of the signal , ,

, , 0 , the 
Yule-Walker equation for the AR parameters , 
1 , is given by  

 

, ⋮

1
2
⋮

1
,

,
0 1 ⋯
1 0 ⋯
⋮ ⋮ ⋱

2 3 ⋯
1 2 ⋯

2 1
3 2

⋮ ⋮
0 1
1 0

.

 (5)

Here, we consider to develop the robust estimation 
technique for the signal  with the degraded 
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measurement data , which is generated by the 
state-space model (6) in actual environments.  

 
̆ , ̆ ,

1 Φ Γ ,
Φ Φ ΔΦ

(6)

In (6) the system matrix Φ  contains the uncertain 
matrix ΔΦ  additionally to the system matrix Φ, 
in comparison with the state-space model (1). Due 
to the uncertain quantity ΔΦ , the trajectory of 
the state vector  strays out of the nominal 
trajectory of . ̆  is the scalar degraded 
signal.  

Let the sequence of the degraded signal ̆  be 
fitted to the AR model of the -th order. 

 
̆ ̆ 1 ̆ 2 ⋯

̆ ̆ ,
̆ ̆

(7)

̆  is expressed in terms of the state vector  
as  

 

̆ , 1 0 0 ⋯ 0 ,

⋮

̆
̆ 1
⋮

̆ 2
̆ 1

.
(8)

Hence, the state equation for the state vector  is 
described by  

 

1 Φ Γ ,
,

Φ

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

⋯

,

Γ

0
0
0
⋮
1

,

̆ .

(9)

The auto-covariance function ,  of the state 
vector  is assumed to have the semi-degenerate 
kernel form of  

 
,

,0 ,
,0 ,

Φ , Φ , .
 (10)

In terms of the auto-covariance function ,
̆ ̆  of the degraded signal ̆  in wide 

sense stationary stochastic systems, the auto-
variance function ,  of the state vector  is 
expressed as follows. 

 

,

̆
̆ 1
⋮

̆ 2
̆ 1

̆ ̆ 1 ⋯
̆ 2 ̆ 1

0 1 ⋯
1 0 ⋯
⋮ ⋮ ⋱

2 3 ⋯
1 2 ⋯

2 1
3 2

⋮ ⋮
0 1
1 0

 (11)

Here, ,1 . By using , 
0 , the Yule-Walker equation for the AR 
parameters , 1 , is formulated as  

 

, ⋮

1
2
⋮

1
,

,

0 1 ⋯
1 0 ⋯
⋮ ⋮ ⋱

2 3 ⋯
1 2 ⋯

2 1
3 2

⋮ ⋮
0 1
1 0

.

(12)

Let ,  represent the cross-
covariance function of the state vector  with 

. Let ,  have the functional form of  
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, ,0 ,

Φ , Φ ,
 (13)

with the system matrix Φ for the state vector .  

Let the fixed-point smoothing estimate ,  of 
the state vector  at the fixed point  be given by  

 , , ,  (14)

as a sum of the products of the impulse response 
function , ,  and the observed values ,1

. Let us consider the least-squares estimation 
problem, which minimizes the mean-square value 
(MSV)  

 || , ||  (15)

of the fixed-point smoothing error , . 
From an orthogonal projection lemma [11] 

 , , ,

1 ,

 (16)

we obtain the Wiener-Hopf equation 

 
, , ,

 (17)

which the optimal impulse response function 
satisfies. In (16), ‘ ’ represents the notation of the 
orthogonality. From (6), (8) and (17), and taking 
into account of the relationship 

, , , 

 

, , ,

, , ,
(18)

is obtained. Here, ,  represents the cross-
covariance function of the state vector  with the 
degraded state  as .  
 
 

3 Robust RLS Wiener fixed-point 
smoothing and filtering algorithms 

Based on the assumptions, in section 2, on the 
robust estimation problem for the observation 
equation with the linear amplitude modulation for 
the signal , Theorem 1 presents the robust RLS 
Wiener fixed-point smoothing and filtering 
algorithms.  

Theorem 1 Let the observation equation, concerned 
with the linear amplitude modulation for the signal 

, be given by (1). Then the robust RLS Wiener 
fixed-point smoothing and filtering algorithms 
consist of (19)-(29) in linear discrete-time stochastic 
systems with the wide-sense stationarity. Here, the 
following information is used. The observation 
vector  in (3) and the system matrix Φ in (4). The 
linear modulating function . The observation 
matrix  in (8) and the system matrix Φ in (9). The 
cross-variance function ,  of  with . 

The variance ,  of . The variance  of the 
observation noise. The degraded observed value 

.  

Fixed-point smoothing estimate of the signal  at 
the fixed point : ̂ , ,   

Fixed-point smoothing estimate of the state vector 
 at the fixed point : ,  

 
, , 1 , ,

Φ 1, 1
(19)

Smoother gain: , ,   

 

, , , Φ

, 1 Φ
,

Φ 1 Φ

(20)

 

 

, , 1 Φ
, , ,

Φ 1 Φ ,
,

 (21)

Filtering estimate of the signal : ̂ ,
,   
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Filtering estimate of the state vector : ,  

 
, Φ 1, 1

Φ 1, 1 , 	 0,0 0
(22)

Filtering estimate of the state vector : ,  

 
, Φ 1, 1

Φ 1, 1 , 	 0,0 0
(23)

One-step ahead prediction estimate of the signal 
: ̂ , 1   

 ̂ , 1 , 1  (24)

One-step ahead prediction estimate of the state 
vector : , 1   

 , 1 Φ 1, 1  (25)

Cross-variance function of ,  with , : 
 

 

Φ 1 Φ

,
Φ 1 Φ , 0 0

 (26)

Auto-variance function of , :  

 
Φ 1 Φ

,
Φ 1 Φ , 0 0

 (27)

Filter gain for , :   

 

,

Φ 1 Φ

,
Φ 1 Φ

 (28)

Filter gain for , :   

 

,
Φ 1 Φ

,
Φ 1 Φ

 (29)

 

Proof of Theorem 1 is deferred to the appendix.  
 
 

4 Robust extended recursive Wiener 
estimation algorithms for observation 
mechanism with nonlinear modulation 

Let an observation equation with the nonlinear 
modulation of the signal  be given by  

 
, ,	  

, 
(30)

where the signal  and the observation noise 
 have the same stochastic properties as those in 

section 2.  
Likewise the design method of the extended 

Kalman filter, in the design of the robust extended 
recursive Wiener estimators, the modulating 

function is put as 
,

̂ ,
 in 

Theorem 1 after expanding the nonlinear 
observation function in a first-order Taylor series 
about ̂ , 1  [1]. Here, ̂ , 1
Φ 1, 1  represents the one-step ahead 

prediction estimate of the signal . Also, 
Φ 1, 1  and Φ 1,

1  in Theorem 1 are replaced with Φ
1, 1 ,  and Φ 1, 1 ,  
respectively.  

Consequently, the robust extended recursive 
Wiener fixed-point smoothing and filtering 
algorithms in the case of the observation equation, 
with the nonlinear modulation of the signal , is 
summarized in Theorem 2. It is noted that the 
proposed robust extended recursive Wiener 
estimators are sub-optimal because of the Taylor 
series approximation of the nonlinear modulating 
function ,  of the signal .  

Theorem 2 Let the observation equation, with the 
nonlinear modulating function ,  of the 
signal , be given by (30). Then the robust 
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extended recursive Wiener fixed-point smoothing 
and filtering algorithms consist of (31)-(42) in 
discrete-time wide-sense stationary stochastic 
systems. Here, the following information is used. 
The observation vector  in (3) and the system 
matrix Φ in (4). The nonlinear modulating function 

,  and the function  given by (42). 
The observation vector  in (8) and the system 
matrix Φ  in (9). The cross-variance function 

,  of  with . The variance ,  
of . The variance  of the observation noise. 
The degraded observed value .  

Fixed-point smoothing estimate of the signal  at 
the fixed point : ̂ , ,   

Fixed-point smoothing estimate of the state vector 
 at the fixed point : ,  

 
, , 1 , ,

Φ 1, 1 ,
(31)

Smoother gain: , ,   

 

, , , Φ

, 1 Φ
,

Φ 1 Φ

(32)

 

 

, , 1 Φ
, , ,

Φ 1 Φ ,
,

 (33)

Filtering estimate of the signal : ̂ ,
,   

Filtering estimate of the state vector : ,  

 
, Φ 1, 1

Φ 1, 1 , , 	 0,0 0
(34)

Filtering estimate of the state vector : ,  

 
, Φ 1, 1
Φ 1, 1 , , 	 0,0 0

(35)

One-step ahead prediction estimate of the signal 
: ̂ , 1   

 ̂ , 1 , 1  (36)

One-step ahead prediction estimate of the state 
vector : , 1   

 , 1 Φ 1, 1  (37)

Cross-variance function of ,  with , : 
 

 
Φ 1 Φ

, Φ 1 Φ ,
0 0

(38)

Auto-variance function of , :  

 
Φ 1 Φ

, Φ 1 Φ ,
0 0

(39)

Filter gain for , :   

 

,

Φ 1 Φ

,
Φ 1 Φ

 (40)

Filter gain for , :   

 

,
Φ 1 Φ

,
Φ 1 Φ

 (41)

Here, the function  is given by 

 

,

̂ ,
,

̂ , 1 Φ 1, 1 .
 (42)

A necessary condition for the stability of the robust 
extended recursive Wiener estimators is given by 

, Φ 1 Φ
0.  
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5 A numerical simulation example 
Let a scalar observation equation with the nonlinear 
mechanism of the signal  be given by 

 

, , ,
, cos	 2 Δ ,

1,000 , Δ 0.000090703,
1.2.

(43)

The nonlinear function in (43) appears in the phase 
modulation of analogue communication systems [1]. 
Here, , Δ and  represent the carrier frequency, 
the sampling period of the signal  and the phase 
sensitivity respectively. The function  in (42) 
becomes 

 

,

̂ |

sin	 2 Δ ̂ | 1 .
(44)

Let  be the white Gaussian observation noise 
with the mean zero and the variance , i. e. 0, . 
Let the signal process be expressed in terms of the 
AR model of the order 2.  

 

1 2
, ,

0. 5 .
(45)

Let  be expressed in terms of the state vector 
 as follows.  

 

, 1 0 ,

1
 (46)

Then the state equation, corresponding to the AR 
model (45), is described by  

 

1 Φ Γ ,
,

Φ
0 1

, Γ 0
1
,

2 , 0.1, 0.8.

(47)

Let the degraded measurement data  be 
generated by the state-space model.  

 

̆ , ̆ ,
1 Φ Γ ,

Φ Φ ΔΦ ,

ΔΦ 0 0
0.08 0.05

.

(48)

In (48) the system matrix Φ  contains the 
uncertain matrix ΔΦ  additionally to the system 
matrix Φ, in comparison with the state-space model 
(47). ̆  is the degraded signal. Due to the 
uncertain quantity ΔΦ , the trajectory of the state 
vector  strays out of the nominal trajectory of 

.  
Let the sequence of the degraded signal ̆  be 

fitted to the 5-th order AR model.  

 
̆ ̆ 1 ̆ 2 ⋯

̆ ̆ ,
̆ ̆ , 5

(49)

̆  is expressed in terms of the state vector  
as  

 

̆ , 1 0 0 0 0 ,
̆

̆ 1
̆ 2
̆ 3
̆ 4

.
(50)

Hence, the state equation for the state vector  is 
described by  

 

1 Φ Γ ,
,

Φ

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

,

Γ

0
0
0
0
1

,

̆ 5 .

(51)

Substituting , , Φ , Φ , , , , , 

,  and Φ 1, 1 ,  into the 
robust extended recursive Wiener filtering and 
fixed-point smoothing algorithms of Theorem 2, the 
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filtering and fixed-point smoothing estimates of the 
signal  are calculated recursively.  

Fig.1 illustrates the signal , the filtering 
estimate ̂ ,  and the fixed-point smoothing 
estimate ̂ , , 5, vs.  for the white 
Gaussian observation noise 0,0. 3 . Fig.2 
compares the mean-square values (MSVs) of the 
estimation errors by the robust extended recursive 
Wiener filter and fixed-point smoother with those 
by the extended Wiener recursive filter and fixed-
point smoother [1] vs. , 0 10, for the 

white Gaussian observation noises 0,0. 3 , 
0,0. 5  and 0,0. 7 . From Fig.2, it is seen 

that the estimation accuracy of the robust extended 
recursive Wiener filter and fixed-point smoother is 
superior to the extended recursive Wiener estimators 
[1] for the respective observation noise. Here, the 
MSVs of the estimation errors are calculated by 
∑ ̂ , /600 , 1
10 , for the fixed-point smoothing errors and 
∑ ̂ , /600 for the filtering errors. 

 

 

Fig.1 Signal , filtering estimate ̂ ,  and fixed-point smoothing estimate ̂ , 5  for white Gaussian 
observation noise 0,0. 3  vs. . 

 

 

Fig.2. Comparison of MSVs of estimation errors by robust extended recursive Wiener filter and fixed-point 
smoother with those by extended recursive Wiener filter and fixed-point smoother [1] vs. Lag, 0 10 

for white Gaussian observation noises 0,0. 3 , 0,0. 5  and 0,0. 7 . 
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6 Conclusion 

This paper, as an extension of the linear robust RLS 
Wiener filter and fixed-point smoother in linear 
discrete-time stochastic systems, originally 
proposed the robust extended recursive Wiener filter 
and fixed-point smoother for estimating the signal. 
It is a characteristic in this paper that the signal is 
modulated with the nonlinear mechanism. The 
observation noise is additional white noise. The 
system matrix in the state equation contains 
uncertain parameters.  

In the simulation example, it is shown that the 
proposed robust extended recursive Wiener filter 
and fixed-point smoother are superior in estimation 
accuracy to the extended recursive Wiener 
estimators.  

 
 
Appendix: Proof of Theorem 1  

From (18) the optimal impulse response function 
satisfies 

 

, , ,

, , , .
 (A-1)

Subtracting , , 1  from , , , we 
have  

, , , , 1
, , ,

, , , , 1

, .

 

By introducing 

 

, Φ ,

, , ,
 (A-2)

 

 
, , , , 1

, , Φ , 1
 (A-3)

is obtained. Subtracting , 1  from 
, , we have 

 

, , 1
, ,

, , 1

, .

(A-4)

From (A-2) and (A-4), we have 

 
, , 1

, Φ , 1 .
 (A-5)

From (14) the filtering estimate of  is given by 

 , , , . (A-6)

The optimal impulse response function , ,  in 
the filtering problem satisfies 

 

, , ,

, , , .
(A-7)

By introducing 

 

, Φ ,

, , ,
(A-8)

 

 , , , , Φ  (A-9)

is obtained. Subtracting , 1  from , , 
we have 

 

, , 1
, ,

, , 1

, .

 (A-10)

From (A-2) and (A-10), it follows that 
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, , 1

, Φ , 1 .
 (A-11)

From (A-8) ,  is expressed as follows. 

 

, Φ ,

, ,

Φ ,

.

 (A-12)

Here,  is given by 

 , . (A-13)

Subtracting 1  from  and using (A-11), it 
follows that 

 

1
,
, Φ

, 1

,
Φ 1 ,
0 0.

 ( 14)

Here,  is given by 

 , . (A-15)

From (A-12) and (A-14), we have 

 

, Φ ,

1
,

Φ 1 Φ
Φ ,

1
,

Φ 1 Φ .

 (A-16)

after some manipulations. Here, 

 
,

Φ . (A-17)

Subtracting 1  from  and using (A-5), 
we have 

 

1
,

,

, 1
,

Φ 1 ,
0 0.

 (A-18)

From (A-2) and (A-15), ,  satisfies 

 

, Φ ,

, ,

Φ ,
.

 ( 19)

From (A-18) and (A-19), after some manipulations, 
we have 

 

,
Φ ,

1
,

Φ 1 Φ .

 ( 20)

Substituting (A-18) into (A-17), we have 

 

Φ 1
,

Φ 1 Φ
Φ 1 Φ

,
Φ 1 Φ ,
0 0.

 ( 21)

Here,  is given by 

 Φ , . (A-22)
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Substituting (A-20) into (A-22),  is calculated 
by 

 

,
Φ 1 Φ

,
Φ 1 Φ .

 (A-23)

From (A-6) and (A-9), the filtering estimate is 
calculated by 

 
, ,

Φ .

 (A-24)

Here,  is given by 

 , . (A-25)

Subtracting 1  from  and using (A-11), it 
follows that 

 

1 ,

, , 1

, , Φ

, 1

,
Φ 1 , 0 0.

 (A-26)

Here,  is given by 

 , . ( 27)

Subtracting 1  from  and using (A-5), 
it follows that 

 

1 ,

, , 1

,

Φ , 1

,
Φ 1 , 0 0.

 (A-28)

From (A-24) and (A-26), the filtering estimate 
,  is developed as follows. 

 

, Φ 1

, Φ 1
Φ 1, 1

Φ 1, 1 ,
0,0 0.

(A-29)

Here, the filtering estimate ,  of  is given 
by 

 , Φ . (A-30)

In (A-29) the filter gain  is given by 

 Φ , . (A-31)

Substituting (A-16) into (A-31), it follows that 

 

,

Φ 1
,

Φ 1 Φ
,

Φ 1 Φ
,

Φ 1 Φ .

 (A-32)

Here,  is given by 

 Φ Φ . (A-33)

Substituting (A-28) into (A-30), it follows that 
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, Φ 1
Φ ,

Φ 1
Φ 1, 1

Φ 1, 1 ,
0,0 0.

 (A-34)

Substituting (A-14) into (A-33) and using (A-31), it 
follows that 

 

Φ 1

,
Φ 1 Φ
Φ 1 Φ

,
Φ 1 Φ ,
0 0.

 (A-35)

From (A-1) , ,  satisfies 

 

, , ,

, , ,

, Φ

, Φ .

 (A-36)

Here, ,  is given by 

 , , , . (A-37)

Subtracting , 1  from ,  and using  (A-
3), it follows that 

 

, , 1
, ,

, ,

, , 1
, ,

, ,

, , 1
, ,

Φ 1 .

 ( 38)

Introducing 

  , , Φ , ( 39)

From (A-38) ,  satisfies 

 

, , 1 Φ
, ,

Φ 1 Φ
, 1 Φ
, , ,

Φ 1 Φ .

 ( 40)

Hence, , ,  satisfies 

 

, ,
, Φ

, .

 (A-41)

Substituting (A-40) into (A-41), after some 
manipulations, we obtain 

 

, ,
, Φ

, 1 Φ
,

Φ 1 Φ .

 (A-42)

In the difference equation (A-40), from (A-13), (A-
33), (A-37) and (A-39), the initial value ,  of 

,  at  is calculated by  
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, , Φ

, , Φ

, Φ

Φ Φ
.

 

From (14) the fixed-point smoothing estimate of 
 is given by  

, , , . 

Subtracting , 1  from , , and using (A-
3) and (A-30), it follows that  

, , 1 , ,

, , , , 1

, ,

, , Φ , 1

, , Φ 1, 1 .

 

The initial value of ,  at  is , .  

(Q.E.D.)  
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